
1

The openQRM Datacentre Management and Cloud Computing Platform

Preface

This documentation is brought to you by OPENQRM AUSTRALIA PTY LTD

https://openqrm-enterprise.com/

Document Version: 24.03.2021

OPENQRM AUSTRALIA PTY LTD

Freedom Taxation Building

1Ransley St

Penrith NSW 2750

Australia

Telephone: +61 (0) 2 8069 9669

Email : info@openqrm-enterprise.com

https://openqrm-enterprise.com/
mailto:info@openqrm-enterprise.com

2

Table of contents
The openQRM Datacenter Management and Cloud Computing Platform...1

Preface ..1

Table of contents ..2

Introduction to openQRM ...6

History ...7

The why of it all ...7

Escaping the Vendor-Lock ...7

What means openQRM? ...8

Architecture, Design, Concept ...8

Services are just Filesờ ...8

The openQRM Boot Concept ...10

openQRMôs automatic hardware detection ...11

openQRM Base ...12

Definition of a Resource .. 12

Kernel... 12

Image ... 12

Appliance ... 12

Storage .. 13

openQRM Plugins ...14

The Plug-in Manager .. 14

Remote Command Execution .. 16

Flow of an openQRM command ... 16

Requirements ..16

Supported Platforms (Storage, Hosts, Guests) ..17

System Provisioning ..18

Generic Provisioning ï openQRMôs Appliance Model ...18

Virtualization Host Deployment ...19

Virtual Machine Deployment ..19

Please notice:.. 19

Storage Layer ..19

Pluggable Storage Types ...19

Storage Management ..21

Storage Authentication ..22

Virtualization Management...22

Pluggable Virtualization Types ..22

3

Hypervisors are just Resource Providersἂ ..22

Server Image Management...23

Installing from NFS ...24

Transfer to NFS ...24

Installing from Local ...25

Transfer to Local ...25

Remote Deployment ...26

Local Deployment ...26

P2V ï Physical to Virtual Migration ...26

V2P ï Virtual to Physical Migration ...27

V2V ï Virtual (type A) to Virtual (type B) Migration ..27

Service High-Available ...27

HA on Resource Level ..27

HA on Application Level ...28

HA for the openQRM server ...28

Plugin description ..29

aws... 29

citrix ... 30

cloud .. 30

Cloud IpGroups .. 33

Cloud Admin ... 33

SOAP-WebService .. 33

collectd .. 33

dhcpd .. 34

dns ... 34

equallogic-storage .. 34

highavailability ..Error! Bookmark not defined.

image-shelf .. 35

iscsi-storage ... 36

kvm .. 36

kvm-storage ... 37

linuxcoe ... 37

local-server .. 37

local-storage .. 38

lvm-storage.. 39

nagios3 .. 39

netapp-storage .. 40

nfs-storage .. 40

4

sanboot-storage .. 41

solx86 .. 41

sshterm ... 42

tftpd .. 42

tmpfs-storage .. 42

vmware-server ... 42

vmware-server2 ... 43

vmware-esx ... 43

windows ... 44

xen ... 44

xen-storage.. 45

zfs-storage .. 45

Getting Started ..46

Setting up the server ..46

Installing openQRM ..47

Debian/Ubuntu .. 47

Updating openQRM ..48

Configuring a Basic Setup ...49

Pre-setup the Hypervisor:... 49

Pre-setup LVM ... 49

Activate DHCP, TFTP, Storage Plugins ... 50

Creating Images .. 50

Image Locations .. 51

Logical Images .. 51

Using a pre-made Image from Image Shelves .. 52

Adding Resources .. 52

Adding Kernels ... 53

Creating Appliances ... 53

Common Use Cases ...54

Scalable High-Availability Setup..54

Integration into existing IT infrastructures ...56

Windows deployment ...56

kvm-storage ... 56

xen-storage.. 58

sanboot-storage .. 59

Installing the Windows openQRM-Client ... 59

Automatic Configuration Management ...60

Plugin Boot Services ..60

5

Automated configuration management via Puppet ..61

Monitoring ...61

Basic Monitoring ...61

Nagios ...61

collectd ..62

Zabbix ..62

The openQRM Cloud ..62

What is Cloud Computing? ..63

Comparison of major Cloud Competitors ...64

openQRM Cloud ..64

Development ...65

The openQRM Build System ..65

Plugin Development, Third-Party Integration, API ..67

Image Hooks ... 71

SOAP Web Services ...72

 Coding Guidelines ...72

Security Considerations ...72

openQRM Security Concept ...72

SSL encryption for the UI access .. 72

Storage authentication ... 73

Securing the Network ...73

Securing your Services ..73

Getting Support ..74

Thanks ...74

6

Introduction to openQRM

openQRM is the next generation, Open- S o u r c e Data Center Management and Cloud Computing Platform designed to

fully automate data centers and manage them in a scalable way. Among its many characteristics is a unique architecture that

unifies physical and virtual machine deployment within a single management console. openQRM integrates with all mainstream

virtualization technologies and supports transparent P-to-V, V-to-P and also V-to-V migrations.

openQRM's storage integration uses snapshots to clone servers for rapid deployment, backup/restore, server versioning, disk

re-sizing and persistent cloud storage. openQRM also provides ñN-to-1ò failover allowing groups of servers to use a single

ñstandbyò. It also has the ability to fail over from physical to virtual machines, and an open API to integrate with existing

business processes and other data center related tools.

With its concept of ñplug-abilityò openQRM combines proven open-source products and commercial third-party components for

data center administration, system- and service-monitoring, high-availability and automated provisioning within a single

management console.

Here a screenshot of openQRM's Datacenter Dashboard:

7

History

The initial version of openQRM was developed by the Qlusters company founded in 2001. While Qlusters first concentrates on

High-Performance-Computing (HPC) it changed its business focus to Data-Center Management in 2003. The first openQRM

version was based on the Java programming language und further developed until version

3.1.4 when the company closed its doors beginning of 2008. Amazing that 2005 openQRM already included a fully automated

provisioning system and the support for Virtual Machine deployment very much similar than todayôs concept of ñCloud

Computingò, just it was named ñUtility Computingò. Caused by a long development history the last versions of openQRM 3.x grew

very big and complex. Because of that development progress slowed down very much in the last years of Qlusters. Luckily,

they decided to change the initial commercial license for openQRM to an open-source one (MPL) in 2006. Matthias Rechenburg

was working for Qlusters since day one and from the start of the open-source release Project Manager of the openQRM project.

When Qlusters shut down in 2008 he decided to continue openQRM as a community-driven open-source project.

At this point, starting with the 4.0 release version, openQRM got re-written from the scratch, its features and mechanisms

were ported to the much lighter PHP language and its license was updated to GPL Version 2. Within just 2 years of re-

design, development and QA the openQRM team succeeded in outperforming the functionalities of the ñoldò, Java-based

openQRM and got the new version enterprise-ready.

The why of it all

Datacenter are always custom and complex environments. It is taking a lot of effort and hassle to maintain them. The complexity

originates from the number of involved subsystems and from the complexity of each subsystem. In a modern Datacenter

there are always quite a few subsystems involved like physical servers, virtual machines, different operating systems, network

components, network configuration and network services like DNS and dhcpd plus a system- and service monitoring,

backup/restore, out-of-band management and so on. Preferred would be to have all those different aspects managed centralized

within a single administration console which is exactly the goal of the openQRM framework.

Fitting this kind of complexity into a single application sounds impossible?

openQRM's main concept is to ñbreakò Datacenters into manageable subsystems. In openQRM each subsystem is separately

implemented via a plugin which provides the functionality to manage it. Then openQRM creates automated and generic

interfaces between the different components via its completely plug-able software architecture. Actually, the base server of

openQRM is designed to just have a single function, to manage plugins. That way new features like additional deployment-

, storage- and virtualization types can be added to openQRM without changing a single line of code in the base server.

Not only that this concept keeps the base server always small, static and robust but it also allows several developers working

on different plugins in parallel without interfering with each otherôs changes.

Escaping the Vendor-Lock

One of the main principals of openQRM is that it generates generic interfaces between different subsystem resulting in a

standardized, flexible and dynamic scalable IT environment while avoiding not necessary dependencies. The specific

subsystems are implemented by either Open-Source or commercial third-party components by fitting them into openQRM's

Datacenter abstraction layer. To provide variety and specific sysadmin preferences openQRM always tries to give several

options regarding the implementation of each subsystem. An example for that are the automated monitoring solutions supported

and integrated in openQRM such as Nagios3, Zabbix and Collectd plus openQRM own basic monitoring service.

You should use what you like and prefer!

The different Virtualization technologies and approaches to unify them almost all try to solve the same problem of

specific, sometimes even closed format of the virtual Hard disks. The fact that every Virtualization technology is using their own
virtual Hard disk format makes migrating Systems, running in those Virtual Machines, to another Virtualization technology

8

or even back to physical system.

To avoid any locking to specific Virtualization Vendors openQRM therefore provides a unified virtualization layer which sits on-

top of each Virtualization technology and conforms them within the openQRM server. In openQRM the (server-) images are

directly connected from the storage, through the network, to the virtual Machines from any type. Via this unified virtualization

layer openQRM supports seamless migration from physical systems to virtual machines (P2V), from virtual machines back to

physical systems (V2P) and also the migration from Virtualization technology A to Virtualization technology B (V2V).

openQRM also avoids Vendor-Locks on the storage subsystems by integrating with various storage providers such as NFS,

iSCSI, AOE (Coraid), EqualLogic, Netapp and ZFS.

Sysadmins should be able to choose and select the technology fitting best for their business

What means openQRM?

The name openQRM means ñopen Qlusters Resource Managerò and is based on its commercial history. To avoid confusion and

to keep the already big openQRM community the openQRM team decided to continue with this name after the previous main

sponsor Qlusters shut down their company. The openQRM Project is now a fully community driven, Open-Source project backed

up again by its new main Sponsor openQRM Enterprise.

Architecture, Design, Concept

Services are just Files

An important question about Datacenters is:

Are we looking at ñServicesò or ñServersò?

Is it important for us that specific physical (or virtual) hardware continues to work or is it more important to keep the services

provided by the whole Datacenter up and running?

Since everything which moves (like CPU ventilators and Hard disks) will break at some point it seems kind of serious to

avoid binding Datacenter services to physical hardware. But even virtual machines are running on their Hypervisors physical

hardware.

But then, what is the best place to store our most important services? The answer is:

Modern Storage Systems

Modern Storage appliances coming with out-of-the-box support for High-Availability, Scalability and Data-security through

enhanced RAID Hard disk arrays allowing to hot-swap failed disk without interruption. All serious files and data within a

Datacenter should be stored on those kind of storage systems to ensure data-availability, its integrity and to have a single

place for backup and restore. At the end it will also help to make your sysadmin sleep better é

openQRM's best-practice recommendation is to avoid using local Hard disks because they are the first thing which fails in

physical servers.

And how we usually install server?

Á Server gets ordered and placed in the datacenter

Á It gets connected to the network

Á The operating system is being installed on the local Hard disks

Á The OS gets its special configuration

Á Application are being installed on it

Á The Applications gets their final configuration and data

9

Á The system is being added to the Backup

Á Monitoring is being setup

When knowing that the Hard disks are the weakest part of our physical (or virtual) hardware why we still bind the

most important parts, the services, applications and servers running on the OS, to it?

With its unique architecture openQRM provides a generic Datacenter-Abstraction layer which completely separates the

ñservicesò from physical servers or virtual machines by storing and using them directly from a robust and high-available

centralized storage.

From the point of view that those Datacenter services are the most important part the openQRM team especially looked at

Linux server and asked themselves:

What is a running server system?

A running (Linux-) server consist of the following components:

¶ a Linux Kernel, which is a file é

¶ some kernel modules, which are files é

¶ an initial Ram disk (initrd), which is a file é

¶ a root-filesystem containing the applications and servers, which are all just files é

When a running Linux system, providing all the important Datacenter services we would like to keep up and running all the
time, is just a bunch of files then we should start treating them as ñfilesò. First thing is to store them in a save place, on a
modern Storage system (there are several more advantages of using modern Storage systems explained later).

Next special observation was about the initrd-stage, when Linux systems are using a small, initial ramdisk to pre-setup the init

procedure by running /sbin/init. The only purpose and responsibility the initrd has in Linux is to find and mount the root-

filesystem, normally located on a local Hard disk. openQRM uses this generic Linux mechanism in an enhanced way by

making the process of finding and mounting the root-filesystem completely plug-able. In openQRM the specific storage-plugin

10

tells a booting system within the initrd stage from where and how it should mount its root-filesystem.

Since storage-types are also plug-able in openQRM any kind of external, remote storage devices can be

used!

One ñfunnyò example is a possible ñgmailfs-storageò plugin which would support booting up systems from Google-Mail account

storage. é. sure, just a funny example, would be slow as dry bread é but on the other hand Google would care about your

backups.

Please find out more about unique boot concept in the next chapter ñThe openQRM Boot Conceptò

The openQRM Boot Concept

Regular boot from Hard disk

¶ System is being turned on

¶ Bios reads boot-sector from first Hard disk

¶ Boot-manager is being executed from the Disk

¶ Boot-manager loads Operating System from local Hard disk

¶ Operating System is being executed and loads its components from the local Hard disk

¶ Operating System starts applications and services

Now at some point the Hard disk will break and loading the boot-manager and/or the operating system will fail. Here how

openQRM overcomes this situation with a centralized, network boot-manager:

The openQRM way

¶ System is being turned on

¶ Bios is configured to do a network-boot (PXE)

¶ System sends a PXE request and asks for an automated network-configuration via dhcp

¶ openQRM's dhcpd-server answers the request and provides an ip-address

¶ System activates its network-configuration and reads its PXE-configuration from the openQRM server

¶ System downloads its operating system kernel and initial ramdisk (initrd)

¶ System executes the Operating System kernel and loads the initial ramdisk

¶ Within the ramdisk network-hardware is being automatically detected and initialized

¶ Having full network connection, the system now downloads its full set of kernel modules

¶ Additional hardware-detection with all available kernel modules

¶ System gets configuration parameters from the openQRM server

At this stage all available hardware is detected and the network is fully initialized. Here the system can continue in two

different ways:

1. As idle, free (meaning available) server resource

2. As an active, assigned resource acting as a service provider

If the system is not assigned yet (1) it will simply stay within its initial, minimal ramdisk waiting for further actions from

openQRM. In case the system is active assigned to a started appliance (2) here the further steps it will execute:

¶ System checks the deployment type and method of the server-image assigned to its appliance

¶ According to the deployment type the system downloads image-deployment hook provided by specific storage-

11

plugin

¶ System executes ñmount_rootò function provided in the image-deployment hook

¶ The image-deployment hook mounts the server-image-location from the remote storage read-writeable

¶ Kernel- and kernel-modules files are being transferred to the mounted root-filesystem

¶ The openQRM-client is being installed on to the mounted root-filesystem

¶ The image-deployment hook re-mounts the server-image-location read-only

¶ System continues with regular init (running /sbin/init on the root-filesystem)

¶ During further init procedure of the System the openQRM-client is started

¶ According to the activated plugins in openQRM the System now starts further plugin services

And what if the network fails?

é. then the provided network services of the Datacenter will not work anyway and one should fix the network asap.

openQRMôs automatic hardware detection

For the past openQRM used a combination of ñhwsetupò, ñkudzu-knoppixò and ñhwdataò to automatically detect
hardware during boot up. Adapted from Knoppix this worked great for a long time. While this method meanwhile is not very well
maintained any more it recently creates troubles especially on CentOS Kernels as reported.

To overcome this situation we researched a new, much more efficient way for openQRM's hardware detection using ñpcimodulesò.

The ñpcimodulesò command is available as a patch for the ñpcituilsò package and simply lists all needed kernel modules according

the pci ids of the detected hardware. Using this tool openQRM's hardware detection now could be reduced to 3 lines of code:

12

While testing this new ñpcimodulesò hardware detection method on physical and virtual systems our QA reported that much

more hardware was detected compared to the previous ñhwsetupò utility. Even USB devices are detected flawlessly.

openQRM Base

Definition of a Resource

A resource in openQRM is ñeverything which has a CPU and some memoryò. Resources in openQRM have different types such

as Physical Systems, Virtualization Host or Virtual Machine. According its type openQRM interfaces and communicates with the

specific resource.

Since the openQRM platform is recommending (not forcing) to avoid using local Hard disks a resource in openQRM is just

CPU and memory. The resource's local Hard disk is in general NOT part of the resource itself but can be used for

e.g., swap space or even for local-deployment. In general, openQRM main concept is based on rapid, image-based

deployment and the server-images of the current running services are located on remote storage devices.

The openQRM team recommends to use the Local Hard disks available in resources (e.g., physical servers) as the local

swap devices for virtual machines running on this system. Makes sense to have the swap space local.

Other than that, the local disks still can be used as storage for applications or customer data. One just need to keep in

mind that this again binds the service currently running on the specific resource to its local disk. In this case it is of course

recommended to have a separated backup procedure for the local disk data.

Kernel

Kernels in openQRM are Linux Operating System kernels which can be assigned to resources. This happens automatically

through the appliance model through openQRM's integrated, centralized network-boot-manager PXELINUX from the Syslinux

project [http://syslinux.zytor.com].

Image

The definition of an image (server-image) in openQRM is that it is located on a network-attached storage device (NAS or

SAN) and contains a root-filesystem of an Operating system supported by openQRM. The image is completely self-contained

and, via the appliance model it and in combination with a kernel can be started on any available (idle) resource.

The server-image root-filesystem may be a minimal Operating system installation which is then further leveraged (e.g., via the

Puppet integration) or it also can be a full installed completely pre-configured set of applications. An image can even be a

snapshot of an existing server or a clone or copy of an existing server-image.

Appliance

Appliances in openQRM representing one (or more) of the actual services which should be provided by the Datacenter. An

appliance is the combination of a kernel, an (server-) image, a resource and service requirements plus service-level-agreements

(SLA). With those informationôs openQRM then fully automates the management of the specific services running on the

appliance's server-image.

for module in $(pcimodules) ; do

modprobe - s - k "$module"

done

http://syslinux.zytor.com/

13

Appliances are just like TVs; it takes a single button to start or stop them and they will always provide the desired

service.

Please check the chapter about High-Availability to see how openQRM automatically keeps Datacenter services running.

Storage

A storage component in openQRM consists of an integrated resource containing some kind of network-attachable storage

(NAS or SAN). Storages in openQRM are providing the image-locations, meaning the place where server- images are stored

and directly attached to resource as required. By creating a storage server openQRM then exactly knows how to interface with

its specific storage technology and further allows automated management of the available storage space and volumes.

openQRM supports a whole bunch of different storage server types such as NFS, iSCSI, AOE, EqualLogic, Netapp and

ZFS but it also provides own custom storage types such as the ñlvm-storageò plugin which is based on Logical

Volume Management (LVM). As virtualization types storage types are fully plug-able in openQRM so that new custom storage

devices can be integrated easily.

Just like appliances the storage resources are also running the openQRM-client service which allows remote- management

of the storage-subsystem by openQRM.

14

openQRM Plugins

Here a screenshot of openQRM's Plugin-Manager:

The Plug-in Manager

Since its Plug-ins are providing all the features of the openQRM Server the Plug-in Manager is the central point to enable (or

disable) additional functionalities for the openQRM managed environment. By default, it presents a list of all available Plug-

ins plus their state. Plug-ins in openQRM can have 3 different states:

¶ Disabled (Stopped)

¶ Enabled and Stopped

¶ Enabled and Started

The Plug-in state can be changed either through the ñactionò icons in the specific Plug-in row or via the group actions

button at the end of the list.

15

Detailed Plug-in states description

¶ Disabled (Stopped)

The specific Plug-in functionality and its menu entry are disabled

¶ Enabled and Stopped

The specific Plug-in functionality is initialized and its menu entry is enabled. Eventual Plug-in services are not started.

¶ Enabled and Started

The specific Plug-in functionality is initialized, its menu entry is enabled and eventual Plug-in services are started.

 Enabling, Disabling, Starting or Stopping a Plug-in in openQRM results in 4 different Plug-in actions:

¶ Plug-in Init

¶ Plug-in Start

¶ Plug-in Stop

¶ Plug-in Uninstall

For each action openQRM submits a Plug-in command to its internal command queue which then runs the commands

through the ñRemote command execution systemò (next Chapter).

Detailed description of the Plug-in commands

¶ Plug-in Init

For the Plug-in Init action openQRM runs:

¶ Plug-in Start

For the Plug-in Start action openQRM runs:

¶ Plug-in Stop

For the Plug-in Stop action openQRM runs:

¶ Plug-in Uninstall

For the Plug-in Uninstall action openQRM runs:

For the ñInitò and ñUninstallò actions a valid openQRM administrator user and password are required. Those parameters

are used by the Plug-ins to create (or drop) additional Plug-in tables in the openQRM database.

Manual running Plug-in actions

By running the above listed Plug-in action commands Plug-ins states can also be changed from the command-line.

OPENQRM_SERVER_BASE_DIR/openqrm/plugins/PLUGIN_NAME/etc/init.d/openqrm - pl ugin - PLUGIN_NAME start

OPENQRM_SERVER_BASE_DIR/openqrm/plugins/PLUGIN _NAME/etc/init.d/openqrm - plugin - PLUGIN_NAME stop

16

Plugin Hooks

openQRM offers a great selection of ñPlug-in Hooksò allowing each Plug-in to run commands when e.g., resource or appliance

state changed. This mechanism is described in detail in the later ñPlug-in Developmentò section.

Remote Command Execution
openQRM's Framework for (remote) command execution

As the central management tool of complete IT environment openQRM needs to be able to run administrative commands on

the openQRM server itself but also on other integrated, remote systems within the openQRM managed network. Therefore,

openQRM provides an SSL-secured remote command execution subsystem consisting of 3 major components:

¶ A ñdropbearò Server automatically deployed and started on every resource managed by openQRM

¶ The public-shared SSL key of the openQRM Server also automatically deployed to every resource

¶ The ñdbclientò util executed by the openQRM command queue

ñDropbearò is a minimal SSH-Server and Client which openQRM uses to create a secure transmission channel between the

openQRM server and its managed resources. Via a public-shared SSL key mechanism openQRM gains password-less, secure

access to all systems within the managed network. Also commands which are being run on the openQRM server itself are using

this safe mechanism.

Flow of an openQRM command

1. PHP resource class sends a command through its ñsend_commandò method.

2. Via the openqrm-exec util (OPENQRM_SERVER_BASE_DIR/openqrm/sbin/openqrm-exec) this method puts the

new command plus its parameters and unique token in the openQRM command queue

(OPENQRM_SERVER_BASE_DIR/openqrm/var/spool/) using the token for the command filename.

3. From there the command is being picked up by the openqrm-cmd-queue

(OPENQRM_SERVER_BASE_DIR/openqrm/sbin/openqrm-cmd-queue), a service started by the openQRM Server

init script.

4. The openQRM command queue sequentially runs the commands and executes them on the specified (remote)

hosts through the ñdbclientò util.

All commands in openQRM are fully logged to ñsyslogò. Failed commands are recognized by the openQRM command queue. In

case a command fails in the queue it is re-scheduled to run 3 times. After a command failed 3 times openQRM generates an

Error-Event which shows up in the Central Event log. In the event log sysadmin get a brief overview of the command which

failed, its error message and the opportunity to Re-Run it.

Requirements

openQRM is designed with an infinite linear scalable architecture providing flexible solutions for custom Datacenter. Depending

on the requirements of the IT environment managed by openQRM therefore it offers nearly infinite ways to set it up.

Following 3 example Use-cases and their system requirements:

Simple Proof-of-Concept Setup

¶ 1 Physical System dedicated for the openQRM Server

¶ VT CPU Extension (full Virtualization Support)

¶ A free partition dedicated for the server-image store (at least 20 GB)

¶ 1 GB Memory (the more the better)

It is no problem at all to run openQRM, the Storage- and Virtualization-part on a single system for e.g., a POC setup.

17

Basic Setup

¶ 3 Physical Systems (one for the openQRM Server, one for Storage and one as a Virtualization Host)

¶ VT CPU Extension (full Virtualization Support for the system dedicated as Virtualization Host)

¶ A free partition dedicated for the server-image store (at least 100 GB) on the system dedicated for the Storage

The basic setup basically starts to distribute the Storage- and Virtualization components to external servers and therefore

provides a better performance and scalability.

Production Setup

¶ 4+N Physical Systems (two for openQRM Server HA, N Storage and N Virtualization Hosts)

¶ VT CPU Extension (full Virtualization Support for the systems dedicated as Virtualization Hosts)

For a production setup it is recommended to take care of the high-availability of openQRM. This is archived by an active-passive

setup for the openQRM Server (e.g., using Linux-ha). For perfect scalability openQRM supports an unlimited number of Storage-

and Virtualization resources. New resources (Storage and/or Virtualization Hosts) can be added to the openQRM managed

network at any time.

Scaling up

Since openQRM fully supports dynamic IT environments it is possible and easy to scale from a simple setup to a basic one

or even to a production setup at any time.

Supported Platforms (Storage, Hosts, Guests)

openQRM distinguishes between different types of resources in the managed network. There are Storage resources, Virtualization

Hosts resources, Virtual Machine resources, Systems dedicated for rapid deployment and the openQRM Server itself. According

to the resource type openQRM includes support for various different Operating Systems, Storage- and Virtualization appliances.

Supported Operating Systems for the openQRM Server:

¶ Ubuntu

¶ Debian

¶ CentOS

It is recommended to always use the latest version of the above listed Linux Distributions. Supported Operating

Systems for rapid deployment:

¶ Ubuntu

¶ Debian

¶ CentOS

¶ Fedora

¶ Suse/openSUSE Windows

¶ (XP/Windows 7)

¶ Solaris/open Solaris

Also, for the Systems dedicated for rapid deployment it is recommended to always use the latest version of the above listed

Linux Distributions.

Supported Storage Appliances:

¶ Dell EqualLogic

18

¶ NetApp Filer

¶ Solaris/open Solaris ZFS Store (e.g., Nexentastore)

Additional to those third-party Storage providers openQRM comes with a whole set of own, custom storage types which are

turning a simple Linux Box with an LVM partition into a rapid cloning, robust server-image store for openQRM.

¶ Supported Virtualization Vendors

¶ VMWare Server 1

¶ VMWare Server 2

¶ VMWare ESX / VMWare Vsphere

¶ Citrix XenServer

¶ Xen

¶ KVM

System Provisioning

openQRM comes with a complete generic deployment abstraction layer and appliance model which conforms provisioning of

physical system and virtual machines from any type. First thing to do to deploy a server-image to a physical server is to integrate

its resource into the openQRM environment. Adding new physical resource to openQRM is way easy. Turning on ñnetwork-

bootò (PXE) in the servers BIOS and powering them on is enough for openQRM to auto-discover and add new servers. As

explained in detail in the section ñopenQRM Boot conceptò the started server will automatically boot via the network and

appear as new, ñidleò resource in openQRM's resource list.

Please note: To initialize and start openQRMôs network-boot environment the ñdhcpdò and ñtftpdò plugin

needs to be enabled and started!

Through openQRM's Virtualization Plug-ins virtual Machines are created and added to openQRM in the same way. Virtual

Machines from different types are similarly created via the Virtualization type specific VM-Manager which allows to set various

VM parameters such as the VM name, amount of memory, number of CPUs and its virtual network connection. The Virtual

Machines boot sequence is then set to ñnetbootò (PXE) allowing them to get seamlessly added to openQRM in the same

way as physical systems. They will appear in openQRM resource list as new, ñidleò resource from the specific Virtual Machine

type.

Generic Provisioning ï openQRMôs Appliance Model

All provisioning and deployment is controlled through openQRM's ñBaseò Menu section using an ñappliance modelò. The

appliance model turns the complex workflows of deploying a new system according a bunch of various configuration

parameters, requirements and SLAs into one, single mouse click. Following the basic rules of an appliance in openQRM:

1) Appliances are providing the Datacenter services

2) An appliance consist of

¶ An Operating System Kernel

¶ A Server-Image containing a root-filesystem

¶ A Resource, acting as the Service container

¶ Additional configuration parameters defining service requirements and service level agreements

3) Every component of an appliance can be transparently exchanged/replaced

4) Each component can be managed separately without any further dependencies

19

4) Appliances are started or stopped by a single action

5) Plug-in Hooks in openQRM taking care to setup and configure all involved appliance subsystems

This appliance model is a central concept in openQRM's framework and all integrated subsystems are

unexceptionally following it.

Virtualization Host Deployment

Virtualization Hosts (Hypervisors) consisting of physical systems which are being parted into several autonomous virtual

machines. openQRM deploys Virtualization Hosts via its generic provision concept using the appliance model. To enable

management of a Virtualization, Host the Hosts-appliance resource-type needs to be set to the specific Virtualization technology

Host type.

Virtual Machine Deployment

Virtual Machines in openQRM are network-booted, deployed and managed in the same way as all other resources.

Please notice:
There are several Virtualization plugins available which bypass the network-boot and support local-deployment and local-boot for

Virtual Machines. Examples for those kinds o f P l u g - i n s are the ñkvm-storageò and the ñxen-storageò Plug-in which are

emulating the ñidleò state of its virtual resources and using openQRM's hook for virtual-resource- commands. The virtual-resource-

command hook provides a method to map directly executed resource commands such as reboot to its virtual complement

which is then executed on the virtual resources host (more details in the development section).

Those Plug-ins adding support for deployment and management of Operating Systems which do not support rapid deployment

via network-boot such as Windows and Solaris/open Solaris within Virtual Machines.

Storage Layer

Since openQRM's rapid deployment methods are based on centralized Storage Systems they are a key component in the

openQRM management network. The Storage layer in openQRM is providing the remote, (server-) ñimage locationò. Depending

on the Storage type this ñimage-locationò can be an NFS-export, an iSCSI Lun, an AOE Volume, any kind of remote block-

device or anything else which contains a valid root-filesystem content.

Similar to Appliances, Storages in openQRM consist of a resource which is already integrated and available in openQRM.

Therefore, the first thing to do to create a new Storage in openQRM is to add its resource. This can be done by deploying

a storage server-image to an existing ñidleò resource. In cases an already existing Storage Server should be used for openQRM

deployment its resource easily can be integrated through the ñlocal-serverò Plug-in.

Some of the supported commercial Storage Vendors offering kind of Storage Appliances which are closed system not allowing to

be directly integrated as monitored resource within openQRM. Examples for that kind of Storage Providers are e.g., NetApp

and EqualLogic. For those Plug-ins the specific Storage resource should be manually created to the ñresource Ÿ newò Web form.

Please notice:

All resources manual added through the ñresource Ÿ newò Web form will be automatically excluded from openQRM basic

monitoring. They will always appear in ñunknownò state (yellow icon) in openQRM since it is not possible (or not supported) to run

additional third-party components, like the openQRM-Client, on those storage appliances.

Pluggable Storage Types

20

To enable support for infinite different Storage Technologies in openQRM the Storage types are Plug-able. New Storage

types are added to openQRM via its Storage Plug-ins which also provide the defined interface for managing the specific

Storage Vendor.

 Here a list of different Storage Plug-ins in openQRM:

¶ aoe-storage

This Plug-in provides an AOE-Storage- and deployment type supporting too boot resources directly from an AOE Storage-Server.

It also provides the Storage-Server part which turns a simply Linux box + AOE- and Vblade-Tools installed into an AOE Storage-

Server fully managed by openQRM.

¶ equallogic-storage

The netapp-storage Plug-in interfaces with NetApp Filer Appliances allowing resources to directly boot from the NetApp

iSCSI Luns. Same as for all Storage Plug-ins it includes an embedded management for the NetApp Filer.

¶ nfs-storage

The nfs-storage Plug-in is almost the simplest Storage Type supported by openQRM. An exported directory including a

serverôs root-file-system content is enough for This Plug-in integrates Dell's Equallogic Storage Appliance into the openQRM

framework. It supports seamless management of Equallogic Storage Systems and the capability to boot resources directly from

the EqualLogicôs iSCSI Luns.

¶ netapp-storage
openQRM to enable resource booting directly from a NFS Storage- Server. Server-images on NFS (NFSROOT) providing a

generic transfer layer so they are a very good candidate for server-image-templates which are then automatically transferred to

e.g., iSCSI Luns, AOE Volumes or even to local block-devices.

¶ local-storage

The local-storage is an exceptional Storage Plug-in in openQRM. It consist of a NFS Storage-Server with an underlaying

Logical Volume Management (LVM) taking care of the supports for rapid cloning. Its deployment mechanism provides a

ñgrabò, ñdeployò and ñun-deployò life-cycle for resources. Its ñgrabò stage transfers the content of all attached Hard disks of a

resource to the remote NFS Storage location using a binary image format (dd). The ñdeployò stage of the local-storage Plug-in

re-transmits those binary server-images back to the local Hard disks of the same or other resources. With its ñun-deployò stage

which automatically updates the server-image on the Storage in case the involved appliance is stopped it keeps a 1:1 relation

between the specific server-image on the remote Storage and the local Hard disk of a specific resource deployed via an

appliance.

Please notice:

The local-storage Plug-ins life-cycle will re-set the involved boot-sequence after the ñdeployò stage to ñlocal-bootò instead of

the regular ñnetbootò. After un-deployment it automatically set the boot-sequence to ñnetbootò again.

¶ iscsi-storage

This Plug-in integrates with the Enterprise iSCSI Target, an Open-Source implementation which is freely available in many

modern Linux Distributions. It automatically manages the iSCSI Targets configuration and exported block- devices plus it

supports to boot resources directly from those iSCSI Luns.

¶ lvm-storage

The lvm-storage Plug-in is a combination of the aoe-storage, the iscsi-storage and the nfs-storage Plug-in featuring an

underlaying Logical Volume Management (LVM) to support rapid cloning and snapshots. It includes an embedded

management console for the LVM volumes within the openQRM UI.

21

¶ xen-storage and kvm-storage

Those Plug-ins providing a Virtualization- (Xen, KVM) and Storage-part (LVM) within a single Plug-in. Its Virtualization part is

using the local (local to the Virtualization Host) LVM volumes to attach them as local (local to the Virtual Machine) Hard disk.

Its Storage part includes full administration capabilities for the Storage Servers LVM volumes. The Plug-ins also following

strictly using openQRM's appliance model but, other than the other Storage types based on direct network-boot deployment,

they are booting their Virtual Machines from their local attached, virtual Hard disks. Independent from openQRM usual

network-deployment those Plug-ins providing the support for Non-Linux Operating Systems such as Windows and Solaris/open

Solaris in openQRM.

Please notice:

This results in a dependency to ñlocal-diskò devices on the Storage Host. That means that VMs from this type must be located on

the same Storage host where the logical volume (the VMs root-disk) is located

¶ tmpfs-storage

The tmpfs Storage Plug-in provides the possibility to deploy (Linux-) System ñin-Memoryò. Depending on the image- configuration

it creates a tmpfs-root-mountpoint which is being populated via ñinstall-from-nfsò.

¶ sanboot-storage

Sanboot-storage integrates GPXE (etherboot.org [http://etherboot.org]) into openQRM as a second, optional network- bootloader. It

supports an image-based Windows-deployment. Using Sanboot Windows systems are directly from an iSCSI Target or AOE-

Storage.

¶ zfs-storage

The ZFS Storage Plug-in allows to benefit from Sun's new robust ZFS file-system provided by Solaris, open Solaris or FreeBSD

systems. The ZFS file-system is known for its awesome features such as high storage capacities, integration of the concepts

of filesystem and volume management, snapshots and copy-on-write clones, continuous integrity checking and automatic

repair, RAID-Z and native NFSv4 ACLs. The ZFS Storage Plug-in in openQRM depends on the ñsolx86ò Plug-in which

integrates Solaris, open Solaris and FreeBSD systems seamlessly into the openQRM framework. It supports booting resources

directly from the remote ZFS file-system through the iSCSI protocol and also provides the storage management capabilities

embedded in the openQRM UI.

Storage Management

openQRM unifies and automates the administration of the different Storage Providers by its integrated Storage Management.

Therefore, during the design phase of openQRM, the openQRM team especially analyzed the frequent and common

storage actions required in the openQRM environment. Those are:

¶ Create a new Volume with a given name and Size

¶ Remove a Volume with a given name

¶ Clone a Volume with a given name (creates a 1:1 copy)

¶ Authenticate a Volume against a resource

If supported by the Storage Technology there are also the following Storage action possible:

¶ Snapshot a Volume with a given snapshot name and snapshot size

¶ Resize a Volume with a given name and a new size

All those Storage actions are implemented by their specific Storage Plug-in and exposed through a Plug-in specific Volume

manager. While the Create, Remove, Clone, Snapshot and Resize Storage actions are executed by the sysadmin the

authenticate action is handled fully automatically by openQRM via a Storage-Auth-Hook as described in the following

http://etherboot.org/

22

chapter.

Storage actions are also integrated within the openQRM Cloud to automate the Storage management for rapid deployment

through the Cloud Portal.

Storage Authentication

openQRM's rapid deployment is all about centralized server-management through network-booting and directly attached

remote root-file-system storage. To secure the storage- and management-network and to ensure only the resource dedicated

for a specific appliance is allowed to access and mount a remote (server-) image-location from an external Storage Server

openQRM automatically takes care to authenticate the resource against its image-location. This happens through a Storage-

Auth-Hook provided by the Storage Plug-ins. According to the appliance image- deployment type this hook automatically gets

executed in the openQRM Server engine when an appliance is starting or stopping. The hook includes all required parameters

and informationôs about the appliance which is then used by the specific Storage Plugin to enable or disable access to an

image-location on the Storage Server.

A detailed functions description of the Storge-Auth-hook is available in the Plug-in Development section.

 Virtualization Management

In openQRM Virtualization Hosts are managed through the appliance model. The specific resource-type in the appliance

configuration tells openQRM which Virtualization interface type to use. For this reason, the Virtualization Host needs to be

integrated and available in openQRM. This can be done by deploying a Virtualization Host server-image to an existing ñidleò

resource. In cases an already existing Virtualization Host should be used its resource easily can be integrated through the

ñlocal-serverò Plug-in.

Pluggable Virtualization Types

Not only the storage types but also the virtualization types are fully plug-able in openQRM. Via its open plugin API openQRM

integrates with VMware-ESX, Vmware-Server 2, Vmware-server (1), Xen, KVM and Citrix XenServer. Adding support for further

virtualization technologies like Virtualbox, openVZ and others is on the future road map. To be able to seamlessly handle

all those different kinds of virtual machines openQRM puts a layer on top of the virtualization methods to unify their

management. In openQRM virtual machines are simply net-booting into the openQRM management environment in the same

way as physical systems.

Hypervisors are just Resource Providers

Continuing with the full separation between hard- and software, meaning on one side physical- and also virtual machines

(because the Vms are running on the Hypervisor which is running on the bare metal) and on the other side the software

layer, the server-images located on a safe storage device, in an openQRM environment a Hypervisor becomes ñjustò a resource

provider, just being responsible to host the virtual compute resource of the userôs choice. That way the appliance running on a

virtual machine also gets fully independent from its Hypervisor Host and can be transparently (live-) migrated to another

Hypervisors of the same or different virtualization technology or even from physical systems to virtual machines and the other way

around. OpenQRM supports P2V, V2P, V2V, P2P migration without any changes on the actual server-images itself.

OpenQRM cannot only manage different types of Hypervisor technologies but it can also deploy them via the regular generic

deployment mechanism of its framework. That offers scalability for the complete IT infrastructure because the data-center can

grow (and shrink) as demanded by just adding (or removing) more Hypervisors

Which Virtualization Technology fits best (for my application)?

Since each Virtualization Technology has different advantages (and eventual disadvantages) it should be selected depending on

which application services should be virtualized. That means for different purposes one should choose the Virtualization type

fitting best to the applications. It also means that in a ñperfect worldò system administrator ending up with managing lots of

23

different Virtual Machine Types and Technologies plus the physical system acting as Virtual Machine hosts. By abstracting

physical and virtual machines as Data center ñresourcesò openQRM is the perfect tool for the ñperfect worldò scenario since

it separates the actual service (OS + applications) from the physical or virtual machine (the ñresourceò) it is running on and

therefore allows the administrator to easily and dynamically adapt the ñresource typeò (the Virtualization type) of services

according to the service demands.

This unique abstraction of the different Virtualization Technologies in openQRM also has another huge advantage:

openQRM avoids and prevents Vendor locking!

With openQRM switching from one Technology to another is absolute transparent and does not affect the actual service

(the server-image) at all.

Server Image Management

Mostly all rapid deployment methods in openQRM taking advantages of modern Storage Server and focusing on an ñimage-basedò

deployment. That means that systems are not installed by openQRM, which of course can be done with openQRM in a fully

automated way using the LinuxCOE Plug-in integration, but systems are ñjustò connected through the network to ready-to-run

server-images on remote Storage server. Here a few of the great advantages of the image-based deployment compared to

regular provisioning via (manual) local-installation.

¶ Server-images are based on well-known-to-work server-templates, working and pre-configured out-of-the-box

¶ Server-images saves the installation step and time. Deployment time is equal Boot time.

¶ Server-images can be efficiently snapshotted. Snapshots just store the changes between the origin image

¶ Server-images can be cloned-on-demand. Even snapshots can be deployed seamlessly

¶ Server-images guarantee a reproducible IT-environment

¶ Server-images can easily be backed-up and restored

¶ Server-images provides a single-place for updates

¶ Server-images can be re-visioned. Think of it like ñsubversion for your serversò

¶ Server-images are just files. Treat them like files.

¶ and much more

Since openQRM supports a whole bunch of different Storage types it provides a logical abstraction which makes it really easy

to use the different server-images types.

An image in openQRM consist of different configuration parameters such as its Storage Server, its root-device identifier and

several other deployment parameters. The two most important parameters are on which Storage Server the image is located

plus a storage-type dependent root-device identifier providing the exact information where the image is located on the Storage.

On NFS-based Storage Server this root-device identifier is the exported path to the image root-file-system, on iSCSI-based

Storages it is the Lun ID and on AOE/Coraid based Storage devices it is the shelf and slot number of the exposed volume. Since

the root-device identifier it is also a plug-able component provided by the Storage Plug-ins.

When creating a new image openQRM first ask on which Storage server its image-location is located. After selecting the Storage

Server openQRM contacts the Storage and triggers it to send its list of current available root-device identifiers. This list is then

used to populate the root-identifier select-box in the ñimage Ÿ newò form.

Please find a detailed description on how the root-identifier hooks is used in the development section.

Rapid deployment in openQRM is based on network-boot and resources are always passing the initrd stage taking care to

mount the server-image's root-file-system content from the (remote) Storage Server. Within this stage the resource enjoys full

network connection plus the capability to download additional tools provided by Plug-ins. The initrd stage also provides

some unique, great ways to transfer root-file-system content from one Storage provider to another.

One thing which all transfer methods have in common is that they require an NFS-based Storage system either as source or

24

destination. Therefore, it is an advantage to have at least one NFS-based Storage Server acting as a store for ñgolden

imagesò (server-image templates).

Please notice:

All of the below listed server-image transfer methods are configured as ñsingle shotò meaning the transfer- configuration is

being resetted after the first deploy.

Following a description of the available transfer methods.

Installing from NFS

The ñinstall from NFSò transfer method is configured through the ñimage Ÿ newò or ñimage Ÿ editò form via the ñinstall- from-nfsò

select box. This box provides a list of all NFS-based server-images available in openQRM.

 A typical Use-case is populating an empty iSCSI Lun which works as explained by the following step-by-step list:

¶ Create a new (empty) iSCSI Lun on an available Storage Server

¶ Create a new image using the (still empty) iSCSI Lun as its root-device identifier

¶ In the new Image configuration select an available NFS-based server-image from the ñinstall-from-nfsò select box

¶ Create a new appliance using an available resource, a kernel and the just created image

¶ Start the appliance

The following happens within the initrd stage of the starting appliance:

¶ The resource discovers the iSCSI Target (the Storage Server of the image)

¶ The resource connects the (still empty) iSCSI Luns as its root-file-system

¶ The resource mounts the ñinstall-from-nfsò image-location in a temporary location

¶ Then the resource copies the root-file-system content from the temporary mount point (the NFS-based server-image

template selected by the ñinstall-from-nfsò select box) to its root-device (the iSCSI Lun) using rsync.

¶ When the transfer completed the resource umounts the temporary location and continues regular boot-up and init

from the, now populated iSCSI Lun.

Transfer to NFS

The ñtransfer to NFSò transfer method is configured through the ñimage Ÿ newò or ñimage Ÿ editò form via the ñtransfer-to-

nfsò select box. This box provides a list of all NFS-based server-images available in openQRM.

A typical Use-case is creating a new server-image template from an existing server-image located on an Lun. This works

as explained by the following step-by-step list:

¶ Create a new (empty) NFS export on an available NFS-based Storage Server

¶ Create a new image using the (still empty) NFS export as its root-device identifier

¶ In the new Image configuration of an existing iSCSI- b a se d image select the just created (still empty)

 NFS-based server-image from the ñtransfer-to-nfsò select box

¶ Create a new appliance using an available resource, a kernel and the iSCSI- based image

¶ Start the appliance

The following happens within the initrd stage of the starting appliance:

¶ The resource discovers the iSCSI Target (the Storage Server of the image)

¶ The resource connects the iSCSI Luns as its root-file-system

25

¶ The resource mounts the ñtransfer-to-nfsò image-location in a temporary location

¶ Then the resource copies the root-file-system content from the mounted iSCSI LUN to the temporary mount point

(the NFS-based server-image template selected by the ñtransfer-to-nfsò select box) by rsync.

¶ When the transfer completed the resource umounts the temporary location and continues regular boot-up and init

from the iSCSI Lun.

¶ Result is a new, fully populated NFS-based server-image containing the root-file-system content of the existing

iSCSI-based image.

Installing from Local

The ñinstall from Localò transfer method is configured through the ñimage Ÿ newò or ñimage Ÿ editò form via the ñinstall-

from-localò select box. This box provides a list of common local root-devices on resources.

 A typical Use-case is populating an empty iSCSI Lun which works as explained by the following step-by-step list:

¶ Create a new (empty) iSCSI Lun on an available Storage Server

¶ Create a new image using the (still empty) iSCSI Lun as its root-device identifier

¶ In the new Image configuration select a root-device from the ñinstall-from-nfsò select box

¶ Create a new appliance using an available resource (one with an existing root-file-system content on the root-device

as configured by the install-from-local select box), a kernel and the just created image

¶ Start the appliance

The following happens within the initrd stage of the starting appliance:

¶ The resource discovers the iSCSI Target (the Storage Server of the image)

¶ The resource connects the (still empty) iSCSI Luns as its root-file-system

¶ The resource mounts its local root-device (defined by the ñinstall-from-localò definition) i n a temporary location

¶ Then the resource copies the root-file-system content from the temporary mount point (the local device) to its

root-device (the iSCSI Lun) using rsync.

¶ When the transfer completed the resource umounts the temporary location and continues regular boot-up and init

from the, now populated iSCSI Lun.

Transfer to Local

The ñtransfer to Localò transfer method is configured through the ñimage Ÿ newò or ñimage Ÿ editò form via the ñtransfer-to-nfsò

select box. This box provides a list of common local root-devices.

A typical Use-case is deploying a network-booted appliance with its root-file-system located on a partition on the local Hard

disk. This works as explained by the following step-by-step list:

¶ Edit an existing (fully populated) NFS-based server-image and set its ñtransfer-to-localò select box to a local root-

device

¶ Deploy this image on a resource via an appliance

The following happens during the initrd stage:

¶ The resource mounts it root-file-system by NFS

¶ The resource mounts the local device configured by the ñtransfer-to-localò image configuration in a temporary

location

¶ Then the resource copies the root-file-system content (the NFS root-file-system content) to the temporary mount

point (the local device selected by the ñtransfer-to-localò select box) using rsync.

¶ When the transfer completed the resource umounts the temporary location and continues regular boot-up and init

26

from its NFSROOT root-file-system

To start this kind of server-image from its resource local Hard disk partition follow the steps below:

¶ Create a Storage from the type ñlocal installed serverò using the openQRM server as the resource

¶ Create a new image, select the ñlocal installed serverò Storage as its storage provider

¶ Fill in the custom root-device from which a resource should boot (the one populated by ñtransfer-to-local)

¶ Create a new appliance using an available resource, a kernel and the just created ñlocal installed serverò image

¶ Start the appliance

The resource will reboot, network boot kernel and initrd and startup init on its local root-device as defined in the image

definition.

Remote Deployment

All rapid deployment in openQRM is done via network-boot (PXE) using a special openQRM initrd. As described in detail in

the section about ñopenQRM boot sequenceò the openQRM initrds are plug-able and allowing a deployment type (created by

a Storage Plug-in) to tell the booting system from ñwhereò and ñhowò it should mount its root-file- system from.

For all remote deployment the usage of local Hard disks of the resources is avoided expect for Swap-Space. Swap-Space

available on local attached Hard disks is automatically detected and used by the resources.

Local Deployment

Local deployment in openQRM is also done via network-boot (PXE) using a special openQRM initrd and comes in three

flavors:

¶ Local-Storage Deployment

¶ Local-Server Deployment

¶ Automatic Installation

Local-Storage Deployment

(described in the Storage section)

Local-Server Deployment

openQRM also supports a local deployment method which allows to centralized, network-boot the resource and let it mount and

use a local Hard disk partition for further boot-up. Basically, it allows to define the local boot-device via a network-bootloader.

HINT: The local Hard disk partition defined for boot-up in the image-configuration can be empty if used in combination with

ñinstall- from-nfsò to automatically populate the partition with root-file-system content.

Automatic Installation

The third flavor of local deployment in openQRM is ñautomatic profile-based installationò via the integration with LinuxCOE

[http://linuxcoe.sourceforge.net/]. This mechanism automatically installs systems on their local disk. Those installation then can be

used for either direct deployment through ñlocal-server deploymentò or as server-templates for server-image creation.

P2V ï Physical to Virtual Migration

Since resources are decoupled from their root-files-systems migration appliances from physical server to virtual machines is

complete transparent and easy. Follow the steps below to exchange an appliance physical resource with a virtual one:

¶ stop the appliance

http://linuxcoe.sourceforge.net/

27

¶ edit the appliance

¶ change the ñresource-typeò from ñPhysical Systemò to a ñVirtualization-type VMò

¶ select a new resource from the type ñVirtualization-typeò

¶ save the appliance

¶ start the appliance

The appliance will now start using the new, virtual resource as defined in the appliance configuration.

V2P ï Virtual to Physical Migration

 Similar to the P2V migration here the steps to migrate an appliance from a virtual machine to a physical system:

¶ stop the appliance

¶ edit the appliance

¶ change the ñresource-typeò to ñPhysical Systemò

¶ select a new resource from the type ñPhysical Systemò

¶ save the appliance

¶ start the appliance

The appliance now runs on a physical system.

V2V ï Virtual (type A) to Virtual (type B) Migration

Using the same method appliances can be moved from one Virtualization type to another. Here the steps necessary for

the migration:

¶ stop the appliance (Virtualization type A)

¶ edit the appliance

¶ change the appliance resource type from ñVirtualization-VMò (type A) to ñVirtualization-VMò (type B)

¶ select a new resource from ñVirtualization-VMò (type B)

¶ save the appliance

¶ start the appliance

The appliance will now start using the new, virtual resource (Virtualization type B) as defined in the appliance configuration.

Service High-Available

HA on Resource Level

When talking about ñGreen ITò the current approach is to use Virtualization to consolidate ñmanyò physical servers to run

virtualized on ñoneò (or more) Hypervisor Hosts. While this method is good to save the overall power consumption it is often

forgotten that the in the new, virtualized situation in the case the ñoneò Hypervisor Hosts breaks those ñmanyò servers

running in virtual machines on this Hosts will also get unavailable. This means that in the modern, virtualized Worlds we need to

especially take care of the high availability.

The usual method to keep system High available (10 custom servers):

¶ Get additional 10 servers preferred of the same manufacture consisting of the same parts

¶ Configure syncing of the disks between the 10 pairs of servers

28

¶ Implement a Fail-over solution for the service running on the 10 clusters

As a result, this method requires 20 physical systems to keep 10 servers high available.

HA in openQRM:

¶ Deploy the 10 custom servers via openQRM

¶ Add 1 server as Hot-Standby

In the case one of the 10 custom servers break openQRM will use the one available system to restart it via its rapid deployment

methods. As the result 10 (or more) servers can made high available with just a single Hot-Standby system (since resource

types are not linked to the actual server-image in openQRM physical servers even could fail-over to virtual machines).

This saves the power consumption of 9 servers!

HA on Application Level

Application HA can be archived in openQRM by adding custom Nagios checks to monitor the service state of a specific

application. In case this check fails it can do various things to re-activate the service again:

¶ Restarting the service

¶ Forcing a reboot

¶ Forcing a fail-over to a passive application-standby

HA on Application level is not yet automated in openQRM but must be setup manual.

HA for the openQRM server

To avoid a ñsingle point of failureò (SPOF) and to keep the openQRM Server high-available it is recommended for a production

setup to run openQRM in an ñactive/passiveò HA-configuration. openQRM's architecture of keeping everything within a single-

base-directory makes it really easy to install openQRM in High-available mode.

The openQRM Team recommends to use Linux-HA [http://www.linux-ha.org/] for the openQRM HA setup. Requirements for

openQRM HA

¶ 2 or more systems for the active and passive openQRM Cluster nodes

¶ Shared-Storage providing the openQRM Server file-data

¶ External (remote) Database

HINT: openQRM does not matter if installed on physical system or on a virtual machine. Steps to install openQRM in

HA-mode

¶ Install OS on the systems dedicated for the openQRM Cluster nodes

¶ Mount the shared storage in openQRM's base-dir (normally /usr/share/openqrm) on all Cluster nodes

¶ Setup Linux-HA with a Cluster ip-address

¶ Install openQRM on ONE system only!

¶ During setup use the External (remote) Database and the Network-interface with the Cluster ip-address

¶ On the rest of the system

¶ link /usr/share/openqrm/web/ to DOCUMENT_ROOT/openqrm

¶ link /usr/share/openqrm/etc/init.d/openqrm to /etc/init.d/openqrm

http://www.linux-ha.org/

29

¶ Wrap /etc/init.d/openqrm into a Linux-HA init script

After that Linux-HA will take care to always keep one system running as the active Cluster node using the global Cluster ip-

address.

Plugin description

aoe-storage

The Aoe-storage plugin integrates Aoe/Coraid Storage into openQRM. It adds a new storage-type 'aoe-storage' and a new

deployment-type 'aoe-root' to the openQRM-server during initialization.

Aoe-storage type: A linux-box (resource) with 'vblade' installed should be used to create a new Storage-server through the

openQRM-GUI. The Aoe-storage system can be either deployed via openQRM or integrated into openQRM with the 'local-

server' plugin. openQRM then automatically manages the vblade disks on the Aoe-storage server.

Aoe-deployment type: The Aoe-deployment type supports to boot servers/resources from the Aoe-storage server. Server

images created with the 'aoe-root' deployment type are stored on Storage-server from the storage-server type 'aoe-storage'.

During startup of an appliance, they are directly attached to the resource as its rootfs via the aoe-protocol.

How to use:

 Create an Aoe-storage server via the 'Storage-Admin' (Storage menu)

Create a Disk-shelf on the Aoe-storage using the 'Shelfs' link (Aoe-plugin menu)

Create an (Aoe-) Image ('Add Image' in the Image-overview). Then select the Aoe-storage server and select an

Aoe-device name as the image root-device.

Create an Appliance using one of the available kernels and the Aoe-Image created in the previous steps. Start

the Appliance

aws

The aws-plugin provides an integration with the Amazon WebService (AWS) and provides a seamless migration-path

ñfromò and ñtoò AWS.

Configure AWS Account Create a new AWS Account configuration using the ñAWS Accountsò menu item. The following

informationôs are required:

AWS Account Name Java Home Dir

EC2 Home Dir

AWS Private key file AWS Cert file

SSH key file used for the AMI AWS Region

Import Servers from AWS To import an AWS Server (Ÿ the AMI of an active EC2 Instance) follow the steps below:

Select an AWS Account to use for the import

Select an active AWS EC2 Instance running the AMI to import

Select an (empty) openQRM Server image (from type NFS- or LVM-NFS)

This will automatically import the AMI from the selected AWS EC2 Instance into the (previously created) empty Server

Image in openQRM.

The imported AMI now can be used with all existing ñresource-typesò in openQRM so e.g., it can now also run on a

physical system or on any other virtualization type.

30

citrix

The Citrix plugin is tested with Citrix XenServer 5.5.0 How to use:

install Citrix-XenServer on a server system

also install the second cd containing the support for Linux Vms

login to the Citrix XenServer via ssh and scp the /usr/sbin/xe util to the openQRM servers /usr/sbin dir enable the

openQRM Citrix plugin via the plugin manager

manually add a resource via ñBase Ÿ Resources Ÿ Newò, provide the Citrix servers mac- and ip-address create

a storage type ñLocal-installed serverò via ñBase Ÿ Storage Ÿ Newò, select the Citrix server resource and provide

a name

create an image via ñBase Ÿ Image Ÿ Newò, provide a name

create an appliance via ñBase Ÿ Appliances Ÿ Newò, select the Citrix serversô resource, the default kernel and

the previously created image

set the appliance ñResource typeò to ñCitrix Hostò and save

go to ñPlugins Ÿ Virtualization Ÿ Citrix Ÿ Citrix VM Managerò, select the Citrix Host appliance now click on ñauthò

and provide the authentication details to login to the Citrix Host

create a new vm via the ò+VMò button

the new vm will boot-up via the network and in a short time appear in the resource overview as a new idle

resource in the data-center

cloud

The openQRM cloud-plugin provides a fully automated request and provisioning deployment-cycle. External data-center

users can submit their Cloud requests for systems via a second web-portal on the openQRM-server. After either manually or

automatic approval of the Cloud requests openQRM handles the provisioning and deployment fully automatically.

How to use:

To setup automatic deployment with the cloud-plugin first the openQRM environment needs to be populated with available

resources, kernels and server-images. The combination of those objects will be the base of the cloud- requests later.

Start some resources (physical and/or virtual) Create one (or more) storage-server

Create one (or more) server-image on the storage-servers Cloud-Users can be created in 2 different ways:

User can go to http://openqrm-server-ip/cloud-portal [http://openqrm-server-ip/cloud-portal] and register themselves

Administrators of openQRM can create Users within the Cloud-plugin UI

Cloud-Requests can be submitted to the openQRM Cloud either via the external Cloud-portal by a logged in user or on

behalf of an existing user in the Cloud-Request manager in the openQRM UI.

start time - When the requested systems should be available

stop time - When the requested systems are not needed any more Kernel - Selects the kernel for the requested

system

Image - Selects the server-image for the requested system

Resource Type - What kind of system should be deployed (physical or virtual) Memory - How much memory the

requested system should have

http://openqrm-server-ip/cloud-portal
http://openqrm-server-ip/cloud-portal

31

CPUs - How many CPUs the requested system should have

Disk - In case of Clone-on-deploy how much disk space should be reserved for the user Network Cards - How

many network-cards (and ip-addresses) should be available High available - Sets if the requested system should be

high-available

Clone-on-deploy - If selected openQRM creates a clone of the selected server-image before deployment

32

Cloud Configuration

Explanation of the configuration parameters:

1. cloud_admin_email - The email address of the Cloud-Administrator

2. auto_provision - Can be set to true or false. If set to false requests needs manual approval.

3. external_portal_url - Can be set to the external Url of the Cloud-portal

4. request_physical_systems - If the Cloud should provide also physical system to the users

5. default_clone_on_deploy - Set to true (default) the Cloud deploys ñclonesò of the selected server-image

6. max_resources_per_cr - Global-Cloud-Limit, sets the max. number of resources per request

7. auto_create_vms - If the Cloud should automatically create new virtual machines

8. max_disk_size - Global-Cloud-Limit, sets the max. disk usage on the Cloud

9. max_network_interfaces - Global-Cloud-Limit, sets the max. number of network-interfaces

